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Accelerated discovery of metallic glasses through
iteration of machine learning and high-throughput
experiments

Fang Ren,1* Logan Ward,2,3* Travis Williams,4 Kevin J. Laws,5 Christopher Wolverton,2

Jason Hattrick-Simpers,6 Apurva Mehta1†
With more than a hundred elements in the periodic table, a large number of potential new materials exist to
address the technological and societal challenges we face today; however, without some guidance, searching
through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly in-
fluenced by processing. We train a machine learning (ML) model on previously reported observations, param-
eters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput
(HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations
are in good agreement with the predictions of the model, but there are quantitative discrepancies in the precise
compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly
improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use
the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries.
Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three
new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive
predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate dis-
covery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of
materials and should prove equally powerful for other materials and properties that are synthesis path–
dependent and that current physiochemical theories find challenging to predict.
INTRODUCTION
Some technologically importantmaterials are kinetically stabilized. One
such metastable class of materials is amorphous alloys of metals,
namely, metallic glasses (MGs) (1). The lack of crystalline order in
MG significantly alters the properties of these materials, thus enabling
novel and improved functionalities. For example, the absence of defor-
mation pathways based on gliding dislocations leads to exceptional yield
strength andwear resistance (2, 3). SomeMGshave enhanced corrosion
resistance because of their ability to rapidly form protective films on the
surface (4). MGs are therefore very promising candidates for structural
applications, especially for high-cycle use in chemically harsh environ-
ments. OtherMGs, such as thewell-knownMetglas systemof alloys (5),
exhibit high magnetic permeability, making them attractive for
electromagnetic shielding.

Recent reports estimate upward of several millionMGs, with a large
fraction of them occurring in the multi-elemental composition space
(6). However, less than a few thousand have been discovered in the last
50 years. The search for newMGs is challenging because they often con-
tain three or more elements, and the nonequilibrium nature of the sys-
tem implies that processing parameters (most commonly cooling rates,
but in some cases enhanced surface diffusion) strongly influence form-
ability. The vastness of the combined composition-processing space
makes searches based on serial trial-and-error experimentation difficult
and expensive; even rapid parallel synthesis combined with high-
throughput characterization (HiTp experimentation) (7) can stall
without additional guidance. For instance, even an aggressive rate
of synthesizing and fully characterizing one ternary per day would
take more than 10 years of HiTp experimentations to search just the
ternary combinatorial space encompassed by 30 common elements
for MGs.

Traditionally, newMG formers have been identified using empirical
rules (8), for instance, Turnbull’s observation that MGs form near deep
eutectics (9). More recently, several theories, based on a variety of
factors including thermodynamic parameters (6, 10, 11), geometric
factors (12), and atomic number fractions (13), lend amore fundamen-
tal understanding of the glass-forming ability (GFA). Although these
theories work well for some MG compositions, no universal predictor
of GFA is currently available. Furthermore, there is no obvious way to
easily incorporate processing conditions or quickly improve these
models from failed predictions.

Here, we demonstrate an alternate strategy that overcomes these
limitations. We use machine learning (ML) iteratively with HiTp
experiments (14–16) to guide the search for new MGs. ML approaches
are well suited to this problem because they can (i) begin with a heter-
ogeneous and sparse data set, (ii) operate with less than perfect
understanding of the underlying physics but still take physiochemical
parameters to accelerate learning, and (iii) progressively improve by
simply adding more observations to the training set. In particular, the
ability of ML to find patterns in observed data makes it possible to
model relationships that are as yet unexplained by physiochemical the-
ories (PCTs) (for example, the relationship between synthesis method
and GFA, as will be shown below). However, there is a problem in
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training anMLmodel solely on previous MG experiments; the MG lit-
erature tends to report successful materials, but examples of un-
successful materials are particularly valuable in improving ML
models (17). Because HiTpmethods test large numbers of materials ra-
pidly, they simultaneously discover and report a large number of suc-
cessful and unsuccessful materials, thereby providing a much wider
variation of properties and very high quality data for ML studies.

This paper highlights an emerging paradigm of data-driven discov-
eries for rapid and guided discovery of materials, whose functionality
depends not only on chemical composition but also on synthesis. The
paradigm is depicted schematically in Fig. 1. The paper begins by con-
structing an ML model based on known discoveries and predicts high
likelihood of findingMG in theCo-V-Zr ternary, whichwe subsequent-
ly validate by HiTp experimentation. The results of HiTp experimenta-
tion are used to train a greatly improved “second-generation” ML
model. We demonstrate that this refined ML/HiTp model successfully
predicts GFA in three new ternary composition spaces, where no exper-
imental observations exist. This paper illustrates howML andHiTp ex-
perimentation can be used in an iterative/feedback loop to easily
accelerate discoveries of new MG systems by more than two orders
of magnitude as compared to traditional search approaches relied upon
for the last 50 years.
RESULTS AND DISCUSSION
First-generation predictions
We began the search for newMGs by training anMLmodel on reports
of GFA in 6780 melt-spinning experiments at 5313 unique composi-
tions, extracted from the Landolt-Börnstein (LB) handbook (18). This
data set contains a large fraction of MG-forming experiments per-
formed over the last 50 years. If there were multiple experiments at a
composition, then it lists whether any of them resulted in a fully amor-
phous alloy. The data set samples a large number of elements (51) and
contains many examples of metal-metal and metal-metalloid glasses. It
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is, however, biased toward experiments that report amorphous samples
(71%of samples are “amorphous”). It contains 315 binary systems (25%
of all possible binaries of the 51 elements) and 293 different ternary
systems, but the ternaries are covered very sparsely with amedian num-
ber of 8 observations per ternary. In addition, nearly 50% of the total
training data come from only 38 ternaries, with the Al-La-Ni ternary
contributing nearly 4% of the observations (225 training entries). As
wewill demonstrate, even this relatively small and biased data set is very
useful in guiding a subsequent generation of successful experiments.

We trained anMLmodel to predictMGs on themelt-spunMGdata
in the LB handbook. When there were multiple experiments reported
for the same composition, we assigned a label of “glass-forming” to that
alloy if any one of the experiments reported a glass formation.We based
our starting MLmodel on the model described byWard et al. (19). We
used the same features and a similar data set asWard et al. (we removed
Ag-Fe-Cu data, which were actually from sputtering experiments) but
retuned the parameters of the ML algorithm and used a single model
for the entire data set rather than the two separate models used by
Ward et al. (The use of a single model facilitates automated model
tuning.) We used the random forest algorithm (20) as implemented in
Weka (21), and selected the optimal number of attributes assessed at each
split by identifyingwhich number yielded the highest accuracy in 10-fold
cross-validation. Henceforth, we will call this the “melt-spun”model.

Because our eventual goal is to predict new MG compositions in
ternaries outside our training set, we evaluate its performance using a
specially designed cross-validation test where we iteratively exclude
from the training set all of the compositions from a ternary and use
the excluded ternary for validation. We call this approach “grouping”
(see Materials and Methods for details). To concisely summarize the
prediction performance of the models, we constructed receiver
operating characteristic (ROC) curves, which evaluate the performance
of a model in a way that takes the uncertainty of each prediction into
account [see the study of Obuchowski (22) for details on use of ROC
curves for assessing performance of binary classificationmodels]. Figure
2A shows the ROC curve for the melt-spun model cross-validated
against themelt-spun observations from the LB handbook. (The orange
dashed lines show the ROC curve for random guesses and therefore for
a model with no predictive performance.) The deviation of the curve
toward the upper left corner from the random guess baseline indicates
enhancement in prediction accuracy. We find strong classification
performance (the area under the ROC curve shown in Fig. 2A is
0.88), which suggests that this model would be useful in predicting
glasses capable of being produced by melt spinning.

Synthesis method dependence
Diffusion kinetics plays a critical role in stabilizing glasses. Different
synthesis methods, therefore, can alter the GFA noticeably. For exam-
ple, materials synthesized by physical vapor deposition, such as magne-
tron co-sputtering, impart enhanced mobility to the surface layers,
achieving local atom conformations that are very difficult to reach by
melt spinning. Several recent experimental reports (23) show that sput-
ter syntheses often naturally form ultrastable glasses, which molecular
dynamics simulations (24) suggest would require thousands of years of
annealing if synthesized by melt quenching.

We therefore needed to know whether the predictions of our model
(melt-spun model) were sensitive to synthesis methods (particularly if
sputtered synthesis was different from melt spinning). To that end, we
extracted an additional 411 observations at 387 unique alloy composi-
tions synthesized by sputtering from the LBhandbook (18). (Notice that
Fig. 1. Schematic depiction of a paradigm for rapid and guided discovery of
materials through iterative combination of ML with HiTp experimentation.
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this is even a smaller training set than that for themelt-spinningmodel.)
The sputtering data set also contains examples of metal-metal and
metal-metalloid glasses but contains fewer elements than the melt-
spinning data set (29 instead of 51). The sputtering data set also has a
more equitable split between amorphous and non-amorphous entries,
with 66% of the entries being amorphous.

We assessed the performance of the melt-spun model to predict
MGs synthesized by sputtering with a similar grouping cross-validation
test described above, but against the 411 observations in the LB
handbook of alloys synthesized by sputtering. The ROC curve, shown
as the blue curve in Fig. 2B, suggests that its performance is significantly
poorer in predicting sputtered synthesized MGs. It appears, perhaps
not surprisingly, that the synthesis method has significant influence
on glass-forming likelihood (GFL; see Materials and Methods for
details).

To make the model sensitive and accurate to synthesis methods, we
tested three different approaches: In the first approach, we added syn-
thesis method as an attribute in training; in the second approach, we
trained separate models for each synthesis method; and finally, we used
the classification scores from the melt-spun ML model as an input to
train a new model on sputtering data. The last approach, in effect, as-
sesses how well melt-spinning GFL corresponds to sputter-deposited
GFL. We call it the “stacked” approach. The cross-validation tests
(see the Supplementary Materials for details) show that all three
approaches improve the accuracy of synthesis-dependent predictions,
but the stacked approach shows the most improvement, especially for
MG formation by sputtered co-deposition. (We will call the stacked
approach ML model for sputtered synthesis just the stacked model.)

The ROC curve for the stacked model, the pink curve in Fig. 2B, is
noticeably different from the ROC curve for themelt-spunmodel cross-
validated against the same data set, indicating that there is sufficient
difference between GFA by melt spinning versus sputtering to justify
two separate ML models. Furthermore, we also noticed that the
performance of the stacked model has markedly improved at the high
false-positive rate (FPR), as indicated by flatter slope of the tangent to
the curve, suggesting that the model is much better at predicting com-
positions unlikely to form glasses by sputtering.
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We then used both the melt-spinning and stacked models to search
for new MG compositions in ternaries composed of 24 nonpoisonous
and inexpensive metals and metalloids [with Herfindahl-Hirschman
index <6000 (25)]: B, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ge, Sr, Zr, Nb, Mo, In, Sn, Si, Ba, and Ta. We searched 2024 tern-
aries (24 choose 3), and for each ternary, we considered compositions
on a 2 atomic % (at %) grid, corresponding to 1326 compositions per
ternary, for a total of 2.38million unique alloys. From these 2.38million
compositions, we selected alloys with a predictedGFL greater than 95%.
From this list, we removed alloys that were compositionally close to
known MGs. We rejected alloys where the sum of the absolute
difference in atom fractions of each element—L1 compositional
distance—is less than 10 at % from known MGs. For the stacked
model, these two filters reduced 2.38 million possibilities to
92,700 MG candidates (~3.5% of the search space, and thus an ac-
celeration of more than 20 in search speed) in 385 different ternary
systems.

Wemade a list of ternaries predicted to contain a large number of
as-yet-unexplored glass-forming alloys—large glass-forming region
(GFR)—and found, for either synthesis method, Co-V-Zr near the
top of the list (see Fig. 2, C and D). [The purple region denotes high
GFL (>95%), yellow denotes low GFL, and green and blue denote
intermediate GFL.] Comparison of the two GFL maps indicates that
the synthesis methods have a strong influence in stabilizing glasses,
as also suggested by the ROC curves (in Fig. 2B), but neither method
is necessarily better than the other for all compositions. For example,
for Co-V-Zr, the models predict that melt spinning will stabilize
glasses in Zr-rich compositions, whereas synthesis by sputtered co-
deposition will extend GFL deeper into the V-rich region.

Comparison with PCTs
Several recent PCTs for MG also suggest that the Co-V-Zr ternary
contains as-yet-undiscovered glasses. Here, we consider two such
theories and apply them to the Co-V-Zr ternary.

The first theory, developed by Yang and Zhang (10), uses the ratio of
the entropy and the enthalpy of mixing of the liquid phase (W, a ther-
modynamic parameter; d, a parameter that captures the structural
Fig. 2. Performance and predictions of ML models for MG formation. (A) ROC curve for the model that predicts melt-spun GFA cross-validated against melt-spun
observations from the LB handbook. (B) ROC curve from the melt-spun (blue curve) and stacked (pink curve) model cross-validated against observations of MGs in the
LB handbook, synthesized by sputtering. Predictions of the GFL for compositions in Co-V-Zr synthesized by melt spinning (C) and sputter co-deposition (D).
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stability as the mean square deviation of the atomic size of elements).
Figure 3A shows the prediction of Yang and Zhang’s approach for the
Co-V-Zr ternary. The prediction not only covers the known MGs on
the Co-Zr binary and the Co-rich region of the ternary but also predicts
high likelihood of forming MG in the center of the ternary.

The second theory is a structure-only approach based on the concept
of efficient packing of atoms in materials. This geometric model (12)
uses a “hard sphere” approximation and calculates the composition
range, where every atom in a given atom’s first coordination shell
touches the central atom and its nearest neighbours; hence, every atom
is simultaneously efficiently packed, forming a highly stable short-range
cluster. The compositions that form efficiently packed clusters tend to
form stable MGs. Figure 3B shows the predictions of this approach for
the Co-V-Zr ternary (see the SupplementaryMaterials for details of the
two physiochemical models).

Although both models have overlapping regions of predictions, the
predictions differ from each other and provide no obvious path to re-
concile them into a single model with improved agreement with each
other. ML, on the other hand, allows inclusion of any inputs, including
parameters from these theories, into a training set to create a unified
model.

We retrained the sputter co-deposition ML model by including
parameters from the thermodynamic model of Yang and Zhang and
quantities related to the efficiently packed clusters as attributes.
The predictions for the Co-V-Zr ternary modified with inclusion
of the two theories are shown in Fig. 3C. (Henceforth, we will call
this the “first-generation ML model for sputtered synthesis” or just
the “first-generation model.”) Inclusion of PCT into the ML predic-
tions for Co-V-Zr does not significantly alter the shape of the GFR,
which is perhaps unsurprising given the general agreement between
both theories and our original model.

To further understand the influence of theories on the results of our
predictions, we investigated the most important features and model
performance before and after adding the PCT-related features.We eval-
uated the importance of features by first eliminating features that have
Kendall rank correlation coefficients above 90% with another feature,
and then used recursive feature elimination to identify the 20 features
with the highest random forest feature importance scores. The top
features in the model did not significantly change whether PCT was in-
Ren et al., Sci. Adv. 2018;4 : eaaq1566 13 April 2018
cluded or not. The top four features for the models with and without
PCTs are the variance in covalent radii, variance in electronegativity,
GFL from melt spinning, and the mean number of unfilled valence
orbitals. The only PCT-related feature that appears in the top 20 is
theW parameter fromYang and Zhang. The effect of new features on
predicted GFL for systems is also subtle. Only 6% of the predicted
GFLs for the 2.4 million candidate alloys changed by more than
10% upon addition of the theories. Nevertheless, we find that adding
PCTs to our model leads to a small improvement in accuracy, as
measured in the grouping test (from 75.9 to 76.8%). We speculate
that majority of the physiochemical insights from the two theories
considered here are already coded into the model through other
attributes. However, as newer theories emerge, including attributes
from them into the ML model is a very fruitful pathway for rapid
enhancement in predictive accuracy.

All four models, the two ML models for two different synthesis
methods and the predictions of the two PCTs, despite large differences
between them, predict high likelihood of finding a largeGFR in themid-
dle of the Co-V-Zr ternary. MGs were first reported in the Co-rich
region of the Co-V-Zr ternary more than 30 years ago (see fig. S6)
(26–28). Sputtered glasses in the Co-Zr binary were also reported more
than 30 years ago and are promising candidates for magnetic shielding
technologies (29). More recently, doping of V into Co-Zr was explored
to create high-energy product rare earth–free permanent magnets by
devitrification (30). All these reports are at the edges of the ternary,
however, and the large central portion of the ternary still remains
experimentally unexplored.

HiTp experimentation
Quantitative validation of the ML and physiochemical MG models to
accurately predict the GFR in even a single ternary system requires syn-
thesis and characterization of at least around 50 to 100, and ideally a few
hundred different compositions. Traditional experimental methods are
too expensive and slow. Therefore, we applied the “fail fast” experimen-
tal approach of massively parallel synthesis and rapid characterization.
We selected “combinatorial magnetron co-sputtering” for parallel syn-
thesis because it can cover large regions of the ternary phase diagram in
a single deposition (31) and has the added advantage, in contrast to layer-
by-layer deposition techniques, of providing excellent atomic mixing.
Fig. 3. Comparison of the first-generation ML model and PCTs. (A) Prediction of high GFL based on the theories of Yang and Zhang (10). (B) Prediction of GFL based
on efficient packing model (12). The white line is the ideal packing prediction, the purple band shows 1% deviation from ideal packing, and the green band shows
2% deviation from ideal packing. (C) Prediction of GFL from ML model with incorporation of the two PCTs (stacked + PCT).
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We also needed a rapid and nondestructive method to identify
glasses. We used the full width at half maximum (FWHM) of the first
sharp diffraction peak (FSDP) from synchrotron-based HiTp x-ray dif-
fraction (XRD) measurements to decide whether the material was
amorphous (a glass). The XRD data collection was integrated with
on-the-fly data analysis (32), which allowed us to characterize more
than a thousand compositions and accurately assess the MG-forming
regions in a ternary in less than a day. Here, we define FWHMof FSDP
of 0.57 Å−1, the FWHMof FSDP for amorphous silica (33), a prototyp-
ical glass, as the threshold to classify our experimental FWHMobserva-
tions into labels for glass formation. We report both FWHM and
categorical (glass/not glass) labels.

Although a large fraction of reports in the MG literature use XRD
and widths of the diffraction peaks to classify materials as glasses, we
were unable to find a consensus threshold for the width of the diffrac-
tion peak for glass formation. Several published reports have classified
glass formation with narrower peak widths than that for amorphous
silica, and thus have used a less stringent threshold than we have here.
Somehave only reported qualitative classifier, such as “broad diffraction
peak(s),” to label glass formation. The lack of a consistent classification
threshold in literature (and consequently in the LB database) lends a
certain amount of uncertainty to the labels on which we train our
models. The uncertainty in the labels is particularly critical in
determining the boundary of the GFR (glass/not glass boundary) and
ultimately puts a limit on how accurate these models can ever become.
We hope that this publication will motivate the MG community to
strive for a consensus on the peak width threshold for classifying glasses
and, even better, to incentivize inclusion of FWHMof the FSDP forMG
discoveries in publications and databases. Publication of both observa-
tional information (FWHM) and a domain experts’ label is invaluable
in concisely capturing community knowledge and quantifying label
“fuzziness” by determining the maximum expectation envelope. Fur-
thermore, large and easily available data sets of FWHM of FSDP will
allow transition from categorical (glass/not glass) MLmodels to regres-
sion ML models trained to predict a continuous variable (FWHM in-
stead of GFL), and thus make them easier to compare to experimental
observations.

A new discovery
For ease of comparison, in Fig. 4A, we again show the prediction of the
first-generationmodel for the Co-V-Zr ternary (repeat of Fig. 3C). Figure
4B shows the FWHMof the FSDP for the sputtered co-deposited Co-
V-Zr ternary extracted from the HiTp experimental observations, and
Fig. 4C shows the GFR labeled on the threshold derived from amor-
phous silica (discussed above) (see the SupplementaryMaterials for de-
tails). Figure 4 highlights two very important results: (i) the discovery of
a large region of newMGs in the previously unexplored ternary through
ML-guided HiTp experiments, and (ii) the remarkable agreement be-
tween ML predictions and experiments, especially when we consider
that these predictions were generated from a small, biased, and sparsely
distributed training set of MG observations.

Both the ML model and the HiTp observations indicate that the
Co-V-Zr system has a large and previously undiscovered GFR. The
ML model predicts that less than 50% of the alloys in this system
have high likelihood of forming glasses, whereas our measurements
find 54% of the ternary to be amorphous. The predicted and ob-
served GFR in the Co-V-Zr system forms a wide band extending
from the Co-Zr binary through the center of the ternary. The exper-
imentally measured GFR starts on the Co-Zr binary spans, a region
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approximately bound by Co50Zr50 to Co75Zr25, and continues along
a line where Co is mostly replaced with V. The width of the band
decreases slightly as more V is added. The ML model predicts a si-
milar band, but it is a little wider and shifted closer to the Co-rich end
of the ternary, where there are knownmelt-spinning glasses. Overall,
we find strong qualitative agreement between our ML predictions
and experimental findings.

To quantify the agreement between the predictions of ML models
and experimental observations, we use a log-loss measure. We use
log-loss measure because it includes confidence of the prediction in
weighing accuracy. It tolerates false predictions if they are slightlywrong
but penalizes them heavily if they are very wrong (see Materials and
Methods for details). The log-loss measure for each ML model is listed
below the GFL map for that model. Quantifying the agreement of the
model with experimental prediction (by log-loss measure) allows esti-
mation of influence various inputs have on glass formation. For exam-
ple, log-loss measure suggests that inclusion of PCTs in the ML model
for the sputtered co-depositedCo-V-Zrmodel improves accuracy of the
predictions by a factor of 2 (log-loss of 3.56 versus 1.75).

Finally, careful analysis of the FWHM of the FSDP reveals that the
material in the center ridge of the Co-V-Zr ternary is nearly twice as
disordered as the material at the boundaries (measured as structural
correlation length, or 1/FWHM). This ridge of high GFR, though
broader, is similar to the prediction of the efficient packing model
(Fig. 3B), suggesting that the concept of efficiently packed clusters
captures some of the essence of glass formation in the Co-V-Zr system.
The narrowness of the predicted GFR in the efficient packing model is
because it is calculated on the basis of a 2% deviation from the ideal
packing ratios. As the radius ratios deviate further from ideal packing,
atomic diffusion and crystallization rates increase, lowering the ability
to form a glass. Implications of our discovery of new MG systems re-
ported here and other physiochemical insights into the formation and
stability of efficiently packed clusterswill be explored in detail elsewhere.

The experimentally observed GFR, shown in Fig. 4C, also overlaps
predictions of some of the melt-spun alloys with high GFL (in Fig. 2C).
Full validation of melt-spinning predictions is beyond the scope of the
current work, but we selected a few alloy compositions along the center
of the GFR band (with the broadest FSDP) to test for GFL by melt
spinning by casting in water-cooled 10:1 copper wedge mold. Prelimi-
nary analysis of the casted wedges shows fully glassy material up to 200
mm, suggesting that these compositions will be MGs if they were melt
spun. (These casted MGs are still undergoing further characterization
and analysis, and the detailed results on them will be published else-
where.) In summary, throughML-guided experiments, we have rapidly
discovered a large new region of MGs with high GFA in a previously
unexplored ternary.

Improving the ML model
Our next step was to explore whether we can make the ML predictions
even more accurate and thereby further accelerate discoveries. The
natural way to improve an ML model is to incorporate more labeled
observations in the training set.

However, combining HiTp observations with observations from
the LB data set poses an inherent challenge. We have more than
1000 unique new observations from a single HiTp experiment, that is,
more than one-sixth the size of the entire LB data set is all concentrated
in just one ternary. To balance this large asymmetry, we “down-
sampled” the HiTp observations to reflect the additional information
they provided to the original LB data set. (Note that this asymmetry will
5 of 11
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become progressively less severe as results of glass formation, from
more ternaries, from HiTp experiments become available.) We ran-
domly selected 70 observations from theCo-V-Zr ternary so that it con-
tained approximately the same number of entries as the most densely
sampled ternary in the LB sputtering data set (Mg-Ti-Al with 65 entries).
However, note that the down-sampled HiTp data set contains much
higher fraction of negative observations than any of the ternaries in the
LB data set and is therefore of much higher quality for learning. After
down-sampling the HiTp data, retraining the model requires no tweak-
ing or retuning but simply adding the new data to the training set—a
process that is completely automated and allows instantaneous update
of the model as soon as new data are acquired. The automated and rapid
iterative update of the model further accelerates the process of discovery.
The updated model retrained on the HiTp experiments on the Co-V-Zr
ternary constitutes the second iteration of the discovery cycle depicted
in Fig. 1, and we call the resultant predictions the second-generation
ML model.

The predictions of the second-generation model for Co-V-Zr are
shown in Fig. 5A. The excellent agreement with the experimental ob-
servations (shown in Fig. 4C), reflected in more than sixfold improve-
ment in prediction accuracy (measured as reduction in the log-loss
value from 1.75 to 0.28), is not surprising given that our training set
now includes Co-V-Zr data. The (marked) improvement in the predic-
tion accuracy for Co-V-Zr is necessary but not sufficient to ascertain
whether themodel on thewhole has becomemore accurate over a larger
combinatorial space after the second iteration.

The question is how much has the second-generation model im-
proved at predicting clusters of high GFL (≥95%) region (that is,
GFR) in yet to bemeasured ternaries. To identify the potential new tern-
aries to further validate the second-generation model, we ranked the
ternaries in the decreasing area of the GFR. The bold black curve in
Fig. 5B shows such a ranking on a semi-log plot. The blue curve in
Fig. 5B shows the fraction of each ternary of likely glass formers that
has yet to be experimentally examined. From the list, we selected two
candidates with large predicted and unexplored GFR, that is, high on
both the black and the blue curves, namely, Co-Ti-Zr and Co-Fe-Zr.
We also selected one candidate ternary predicted not to have any
glass-forming alloys: Fe-Ti-Nb. We chose the Fe-Ti-Nb ternary also
Ren et al., Sci. Adv. 2018;4 : eaaq1566 13 April 2018
because, although its three elements are neighbors of Co-V-Zr in the
periodic table, the ML model predicts it to have very poor GFA, sug-
gesting a very high and still incompletely understood variability in
GFA across the periodic table. The first two columns (A1 to A3 and
B1 to B3) of Fig. 6 show the prediction of the first- and second-
generationMLmodel, respectively. The third column (C1 to C3) shows
the FWHM of the FSDP for these three ternaries extracted from HiTp
experiments, and the last column (D1 toD3) shows themap of GFR for
each of the three ternaries derived from the glass/no-glass threshold
based on amorphous silica FWHM. Figure 6 shows that the experimen-
tal observations, for all three ternaries, are in good agreement with the
prediction for both generations ofMLmodels, although the agreements
with the second-generation model are significantly better. The second-
generation model improves prediction accuracy (as measured by
log-loss value) by three to four times for the glass-forming ternaries.
Log-loss measure decreases from 1.58 to 0.39 for Co-Ti-Zr and from
1.70 to 0.49 for Co-Fe-Zr from the first-generation to the second-
generation model. For the non–glass-forming ternary, Fe-Ti-Nb,
the second-generation model improves prediction accuracy by 60%
(the log-loss value decreases from 2.37 to 1.48). Iteration of ML with
HiTp experimentation has made the second-generation ML model a
much improved predictor of MGs in ternaries produced by sputtering.
It has also guided us to discover two new glass-forming ternaries with
significantly large GFR.

One obvious trend highlighted by Fig. 5B is that only approximately
8% of the ternaries, and even a fewer fraction of alloys, are predicted
to form glasses. (The model predicts that only 20,104 alloys out of
2.38 million composition search space, that is, ~0.8%, are likely to
form glasses.) The second-generation model predicts occurrence of
glasses to be much rarer than the first-generation model (8% versus
18% of ternaries and 0.8% versus 3.4% of the compositions). The
rareness of MGs implies that without guidance, only a very small
fraction of experiments would lead to the desired outcome, making
discoveries very expensive. Leveraging the predictions of the ML
model highlights a pathway for improving the rate of successful dis-
coveries by over an order of magnitude on top of the orders of magni-
tude acceleration possible from HiTp experimentation. The models
predict that glass-forming alloys are clustered into a small number of
Fig. 4. Comparison of new HiTp experimental results with the first-generation predictions. (A) Prediction of GFL for sputter co-deposition from ML model with
incorporation of PCTs. (B) FWHM of the FSDP measured in HiTp XRD experiments. (C) Map of the GFR based on a glass formation threshold determined based on the
FWHM of FSDP of amorphous silica (a-silica) in XRD measurements (see text for details).
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ternaries rather than randomly dispersed throughout the composition
space. Clustering ofMGs in a composition space suggests that searching
the broad swaths of compositions in a single ternary for MGs rather
than a small number of compositions inmany different ternaries is like-
ly to be far more effective for finding newMGs; HiTp experimentation,
where an entire ternary (or at least a very large fraction of a ternary) is
Ren et al., Sci. Adv. 2018;4 : eaaq1566 13 April 2018
synthesized in parallel and rapidly characterized, seems particularly well
suited for accelerated discoveries. For example, searching 2.4 million
alloy compositions for MGs by traditional methods (serial experi-
mentation), with even an aggressive search protocol of synthesis
and characterization of 5 alloys a day, operating 365 days a year,
would take over amillennium (1300 years) to complete. In the course
Fig. 5. Higher-generation ML models. (A) Revised predictions for Co-V-Zr ternary. (B) Predictions of ternaries with the largest as-yet-unexplored GFR. (C) Comparison
of the ROC curves for first-, second-, and third-generation models cross-validated against all available sputtered co-deposited synthesis data (LB + HiTp).
Fig. 6. Comparison of first- and second-generation predictions with HiTp experimental results for Co-Ti-Zr (first row), Co-Fe-Zr (second row), and Fe-Ti-Nb
(third row) ternary. (A1 to A3) Prediction of GFL from the first-generation ML model. (B1 to B3) Revised predictions from the second-generation ML model. (C1 to C3)
HiTp experimental map of the FWHM of the FSDP in XRD measurements. (D1 to D3) Experimental map of the GFR derived after application of the glass formation
threshold based on amorphous silica applied to data in (C1) to (C3). Purple, glass; yellow, not glass.
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of this work, we were able to synthesize and screen a ternary
(~1000 alloy compositions) in a day, resulting in a 100-fold acceleration.
But even with HiTp experimental searches, glass formation in ternary
alloys is still sufficiently rare that, without guidance provided by theML
models, discovering all potential MG formers in ternaries composed of
30 common elements could easily take decades. But with a predictive
model with a precision of ~80%, such as that of the ML models devel-
oped here, experiments can be directed to ternaries predicted to have at
least a few alloys with high GFA, and a further 10-fold increase in the
rate of discoveries can be easily achieved (see the Supplementary
Materials for details of the estimate of increase in the rate of success).
Therefore, by combining ML and HiTp experimentation, we believe
that a focused and guided search can discover most ternary MGs com-
posed of nontoxic and earth-abundant elements in a just few years.

Amore detailed analysis of the GFR ranking of the ternaries (Fig. 5B)
highlights other curious trends. For example, several, but not all, Co-
Zr–containing ternaries are predicted to contain alloy compositions
with high GFA. Themodel predicts the following trend with decreasing
GFR in Co-Zr-X ternaries, whereX goes fromV, Ti, Fe,Mn, Ta, Nb, Al,
Si, B, Zn, etc. (Less than 2% of compositions in Co-Zr-B are predicted to
be glass-forming.) To better understand this trend, we estimated liqui-
dus surfaces for the four ternaries investigated in detail here. Liquidus
surfaces are known for a several ternary systems but not for the four
ternaries investigated here. We estimate them from known binary
and ternary phase equilibria data, but note that there is a high degree
of uncertainty in some of the composition spaces. The relationship be-
tween the liquidus, FWHM, and GFR, shown in fig. S7, suggests a
strong correlation between glass formation and the C15 (MgCu2 proto-
type) Lave and B2 liquidus phase fields common to all four systems.
These results indicate that these particular ordered phases are difficult
to crystallize quickly, resulting in glass formation. For instance, for the
Co-Zr–containing ternaries, despite the ZrCo2 C15 Lave phase having a
high melting point relative to surrounding phases, the exceptional cor-
relation between the GFR and the ZrCo2 liquidus phase field as it
extends into the ternary composition space suggests a high kinetic bar-
rier to crystallization. These correlations further suggest that large mis-
match in ionic sizes and the presence of larger atoms in these structures,
such as Zr, hinders crystallization more so. Extending this argument
further, relatively small size difference between the constituent atoms,
as is the case for the Fe-Ti-Nb ternary system, appears to lower the
resistance to crystallization, resulting in poorer GFA. It is also worth
noting that liquidus regions relating to the primary crystallization of
solid solution regions exhibit negligible to near-zero glass formation,
which alignswell with the lattice destabilizationmodel outlined by Laws
et al. (12). The Co-Zr glass-forming ternaries can also be understood in
the framework of the efficient packing model (12), whereby the atomic
size ratio of Co to Zr is almost topologically ideal for efficient atomic
packing within this composition space and is also likely in part respon-
sible for extended glass formation in these particular systems. Fully
understanding the role the third element plays in the ternary systems
to either enhance or suppress this propensity could lead to further new
insights. For example, Fe and Co are similar in size and appear to easily
substitute for each other, giving rise to a pseudo-binary glass-forming
band in the ternary. Therefore, although our search approach is not
built on any deep physiochemical foundations, we believe that a reliable
ML model which predicts GFL in as-yet-unexplored ternaries could
lead to new insights and deeper physiochemical understanding when
combined with HiTp experimentation that assess glass formation in
the whole ternary composition space. It opens the possibility for virtual
Ren et al., Sci. Adv. 2018;4 : eaaq1566 13 April 2018
experimentation and exploration. We are beginning to use the predic-
tions of the ML models as highlighted above to explore these trends
further. Results of these explorations will be published elsewhere.

Following the discovery paradigm outlined here, observations for
the three new ternaries (Co-Ti-Zr, Co-Fe-Zr, and Fe-Ti-Nb)were added
to the ML model for the third iteration (third-generation ML model).
To understand how each generation of the ML model performs, we
tested them in a grouping cross-validation against all the sputtered data
we have (that is, 411 observations from the LB handbook plus 70 ran-
domly picked observations from each of the four HiTp data sets dis-
cussed here). Again, the model was not tweaked or retuned in any
way but only retrained with additional data from these three ternaries.
We find, as seen in Fig. 5C, that the performance of themodel improves
systematically between each generation (the area under the ROC curve
increases from0.66 to 0.80). The improvement from the first generation
to the second generation is over the entire prediction range, but it is
particularly large at high FPR. The near-perfect performance of the
model at the highest FPR (indicated by a flat slope of the tangent to
the curve) suggests that the second-generation model has learned with
near perfection to predict compositions unable to form glasses. A cur-
sory observation appears to showmarginal improvement from the sec-
ond generation to the third generation, but the improvements are
significant if one focuses on where they occur. The third-generation
model still has near-perfect accuracy on predicting alloys with low
GFL, but now it has become much better at predicting glass-forming
alloys as well (improvements at the left, low FPR region of the ROC
curve). We emphasize that these increases in accuracies indicate im-
proved performance not only on the systems we assessed in this work
but also for all ternaries for which there are experimental data. The
generalizability/universality of our model is improving as we per-
form more HiTp experiments and feed their results back into the
ML model.

Moving forward, we are facedwith two complementary choices. The
second- and third-generation ML models, as seen above, have become
sufficiently reliable, though still not perfect, predictors for glass forma-
tion. The first choice is then to use these models, even if they are not
completely accurate in their predictions, to quickly guide toward rapid
discoveries of newMGs. The model will slowly improve as more obser-
vations are included in the training set. The second choice is to inves-
tigate strengths andweaknesses of the currentmodel and then to search
for unexplored ternaries that would have the highest likelihood of
improving the prediction accuracy of the model. In the beginning,
the second strategy may appear unproductive as it focuses on high un-
certainty predictions and will often lead to exploration of ternaries with
few alloys with high GFL, but it would allow the model to evolve far
more quickly toward a highly accurate predictor ofMGs and, in the long
run, would result in more discoveries than the first strategy. Conse-
quently, an active learning approach that balances these two strategies
might be the optimal use of HiTp experimentation to guide to new un-
discovered MGs and lead to more reliable models for predicting MGs
(34). The more reliable model with higher accuracy will be eventually
needed to guide the search for MGs into more complex composition
spaces (quaternary and higher-order systems) and more nuanced syn-
thesis conditions.
CONCLUSIONS
In conclusion, we show that iterative application of ML modeling and
HiTp experimentation is a very powerful paradigm to find new MGs.
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We used it here to discover three new ternaries with large GFRs. We
further show that even when the first-generation ML predictions are
not significantly more accurate than predictions of PCTs, they rapidly
surpass themwith additional observations and can capture nuances that
are harder to predict otherwise. We believe that this paradigm of data-
driven discovery can be easily extended to accelerate the search for a
wide range of technologically important materials, from high-entropy
alloys to catalysts. It is particularly attractive formaterials forwhich fully
predictive PCTs have yet to be developed, and synthesis methods and
other complex parameters (such as morphology, microstructure, and
substrate interaction) play a large role in determining their properties
and performance.
MATERIALS AND METHODS
Experimental design
The objective of this workwas to combine supervisedML, rapid parallel
synthesis, and HiTp characterization to accelerate material discovery.
Supervised ML modeling
Weused four differentMLmodels in this study: (i) a retuned version of
theWard 2016model (19), (ii) a model trained on sputtering data from
the literature, (iii) a model where we added PCTs into the representa-
tion, and (iv) amodel trained on sputtering data from the literature plus
the Co-V-Zr data generated in this work. All models were trained using
Magpie (19, 35), and the software, data sets, and input files necessary
for recreation are available on GitHub (https://github.com/fang-ren/
Discover_MG_CoVZr).

The revised Ward 2016 model was trained on the melt-spinning
GFA of metal alloys collected using the set of “general purpose”
attributes proposed by Ward et al. as the representation (19). The dif-
ferences between this model and the one created byWard et al. in 2016
are as follows: (i) the elimination of Ag-Cu-Fe data from the training set
(Ag-Cu-Fe data in the LB database were synthesized by sputtering, not
melt-spinning, and erroneously included in the 2016 data set), (ii) re-
tuning of theML algorithm, and (iii) using a single model for the entire
data set, rather than two separate models, to facilitate automatedmodel
tuning.Ward et al.used twodifferentmodels: one for alloys that contain
onlymetallic elements and the other alloys that contain at least one non-
metal or metalloid. Each ML model was trained using a random forest
algorithm, as implemented in Weka (21, 36). Full details of the model
and a web interface for using it for arbitrary compositions are available
at oqmd.org/static/analytics/composition.html.

The sputtering GFA model was trained using the same attributes
and ML algorithm as model (i), but was trained on data describing
GFA measured using sputtering experiments. In total, our sputtering
data set includes 411 entries at 393 different compositions, which were
all collected from the LB handbook (18). We used the same strategy to
select a single entry for each composition aswith themelt-spinning data
set (that is, reporting glassy if any entry reported glass formation). To
make the model sensitive to synthesis methods, we tried three different
approaches (described in the Supplementary Materials) but finally
chose a stacked approach where we use the label (that is, “glass” or
“not glass”) predicted by model (i) and the likelihood as an additional
attribute in training.We also reoptimized the hyperparameters for ran-
dom forest using the same technique as model (i).

The PCT-enhanced model used the same training set as model (ii)
but included attributes derived from two different theories for glass for-
mation: the thermodynamic theory of Yang and Zhang (10) and the
structural theory of Laws et al. (12). Complete details of the attributes
Ren et al., Sci. Adv. 2018;4 : eaaq1566 13 April 2018
created based on these theories are available in the Supplementary
Materials. We also used random forest as the ML algorithm for this
model and determined the optimal set of hyperparameters for random
forest using the same strategy as for models (i) and (ii).

The sputtering model with HiTp data for Co-V-Zr, Co-Ti-Zr,
Co-Fe-Zr, and Fe-Ti-Nb was trained first by including the down-
sampled Co-V-Zr data generated in this work through HiTp exper-
imentation to the training set for model (iii) for the second-generation
MLmodel, and again retrained by including down-sampled HiTp data
for the additional three ternaries for the third-generation model. Full
details of the model and a web interface for using it for arbitrary com-
positions are available at oqmd.org/static/analytics/composition.html.
Thin-film alloy deposition
Each ternary was divided into three combinatorial composition spreads
(libraries). Each library was deposited on a 76.2-mm Si wafer using an
AJA sputtering system at room temperature with a substrate-target dis-
tance of 11.3 to 12.0 cm and a base pressure of less than 1 × 10−8 torr.
Alloys were co-deposited using single-element targets onto 76.2-mm Si
to form 100-nm-thick films. The single-element targets were calibrated
by controlling the deposition rate at various gun powers and gun tilts
and fitted to the in-house sputter model. The exact deposition param-
eters are included in the Supplementary Materials. The precision of
composition calculated by the in-house sputter model is also included
in the Supplementary Materials. The ternary system was synthesized
using a deposition rate less than 0.07 Å/s for each element. The film
thickness was quantified by a quartz crystal monitor within the depo-
sition chamber and then modeled based on the procedure described by
Bunn et al. (31).
XRD and XRF measurements
Two-dimensional (2D) XRD patterns were collected on the
combinatorial libraries at the HiTp XRD facility at Beamline 1-5 at
Stanford Synchrotron Radiation Lightsource. A MarCCD detector
was used for data collection. A 12.7-keV x-ray beam was collimated
to 0.3 mm × 0.3 mm for the measurements. The libraries were scanned
with a grazing incidence angle of 3° or 4° to minimize the diffraction
from the silicon substrate. The grazing incidence geometry resulted in
an approximately 3-mm probe footprint on the library. The libraries
were scanned with a 3-mm spacing.

Simultaneously with XRD data collection, a fluorescence detector
(Vortex, SNTUS-178-1113) was used to collect (partial and relative)
composition maps. The x-ray fluorescence (XRF) system was not cali-
brated to provide absolute compositions. It was also unable to map cer-
tain elements (for example, Zr) because of the incidence x-ray energy.
The main goal for the XRF analysis was to provide orientation and
rotation registration. The orientation and rotation information thus
obtained was fed into an in-house model that generated composition
maps associated with the XRD maps. The chemical compositions pre-
dictedby the in-housemodelwere thenvalidated bywavelength-dispersive
spectroscopic (WDS) analysis on a few selected regions of the
combinatorial libraries (for example, Co- and V-rich regions of the
C-V-Zr system).
XRD data processing
By using LaB6 powder as a standard material, we extracted the geo-
metric parameters of the 2D detector including the sample-to-detector
distance, the direct beam position on the detector, and the tilting and
rotation of the detector. These parameters were used to transform raw
images to calibrated Q-c images in diffraction coordinates, and then
integrated and normalized to obtain 1D spectra. The details for XRD
data processing can be found elsewhere (32). The backgrounds were
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found by fitting a spline subtracted function on a fewmanually selected
data points on the 1D spectra. Because most of the spectra have the
FSDP located between 2.49 and 3.15 Å−1 in Q, and two small peaks
centered at about 1.9 and 3.4 Å−1 in Q are known to be from the silicon
substrate, the FWHM of FSDP was extracted by fitting a Gaussian and
Lorentzian sum function using three predefined peaks on the
background subtracted spectra.
Ternary plotting
The ternary plots in this paper were made by modifying the Python
package “python-ternary” (37).

Statistical analysis
Glass-forming likelihood
TheGFLwas defined as the confidence that an alloy will form a glass, as
predicted by the ML model. Here, we select a threshold GFL of 95% to
define “high-confidence” predictions forMGs and color them purple in
the prediction ternaries. At this threshold, the FPR of themodel (that is,
the fraction of non-glasses predicted as glasses) is only 1%. At a 50%
GFL, where the model predicts glass and non-glass with equal like-
lihood, the FPR is 24%, which suggests that selecting 50% as the thresh-
old for predicting a material to be glass-forming would lead to many
false positives.

Two sets of statistical accuracies were used to assess ML predic-
tions. The first was used to test the prediction accuracy of the
model for the entire data set, and the second was used to test the
prediction accuracy of the model for individual ternaries.
ROC curves
We performed a specialized cross-validation test, which we call group-
ing cross-validation to assess the prediction performance of the model
against the entire data set. In grouping cross-validation, we iteratively
withheld each ternary system present in our data set to use as a test set.
This testwas designed to evaluate the ability of eachmodel to predict the
GFA of systems not included in the training set and thereby approxi-
mate how this model is used in practice. We performed three grouping
cross-validation tests: We compared the performance of a model
trained on only melt-spinning data (tested against only melt-spun ob-
servation from the LB handbook), compared the performance of the
melt-spunmodel and the stackedmodel against sputtering data from
the LB handbook, and finally tested the performance of the first-
generation (trained on sputtering only data from the LB handbook),
second-generation (trained on sputtering data from the LB handbook
plus down-sampledCo-V-ZrHiTp data), and third-generation (trained
on sputtering data from the LB handbook plus down-sampled Co-V-Zr,
Fe-Ti-Nb, Co-Fe-Zr, and Co-Ti-Zr HiTp data) model against the entire
sputtering data set (LB handbook entries plus observations from all four
HiTp ternaries investigated here).
Log-loss accuracy
Weuse log-loss tomeasure the accuracy of theMLpredictions in a tern-
ary. The log-loss accuracy is a metric for measuring the performance of
a classification model that takes the “certainty” of each prediction into
account. It is computed using the following relationship

Log‐loss ¼ 1
N
∑
N

n¼1
ynLogðŷnÞ þ ð1� ynÞLogð1� ŷnÞ

whereN is the number of entries, yn is the true value of prediction (here,
0 is defined as “glassy” and 1 as “crystalline”), and ŷn is the predicted
class, which ranges from 0 (100% confidence in glassy) to 1 (100% con-
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fidence in crystalline). Smaller values of log-loss are better, and the
optimal value is 0. For reference, the log-loss of theWard 2016model
in cross-validation (that is, averaged over all materials in the training
set) is 0.246.
SUPPLEMENTARY MATERIALS
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fig. S2. Prediction of GFR by two physiochemical models.
fig. S3. Elemental gun configuration on AJA ATC Orion 5 sputtering system.
fig. S4. Accuracy of composition calculated by the in-house sputter model.
fig. S5. Experimental determination of glass formation in Co-V-Zr ternary.
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